Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration

نویسندگان

  • G. C. Shit
  • M. Roy
چکیده

With an aim to investigate the effect of externally imposed body acceleration and magnetic field on pulsatile flow of blood through an arterial segment having stenosis is under consideration in this paper. The flow of blood is presented by a unsteady micropolar fluid and the heat transfer characteristics have been taken into account. The non-linear equations that governing the flow are solved numerically using finite difference technique by employing a suitable coordinate transformation. The numerical results have been observed for axial and microrotation component of velocity, fluid acceleration, wall shear stress(WSS), flow resistance, temperature and the volumetric flow rate. It thus turns out that the rate of heat transfer increases with the increase of Hartmann number H, while the wall shear stress has a reducing effect on the Hartmann number H and an enhancing effect on microrotation parameter K as well as the constriction height δ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Modeling of Micropolar Blood Flow in a Stenosed Artery Under the Body Acceleration and Magnetic Field

Blood flow is modeled as non-Newtonian micropolar fluid. The non-linear governing equations of continuum and momentum in the cylindrical coordinate are being discretized using a finite difference approach and have been solved iteratively ,through Crank-Nicolson method. The blood velocity distribution, volumetric flow rate and Resistance to blood flow at the stenosis throat are computed for vari...

متن کامل

An implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery

With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...

متن کامل

Numerical Simulation of Micropolar Flow in a Channel under Osciatory Pressure Gradient

We numerically investigate the pulsatile flow and heat transfer of a micropolar fluid through a Darcy-Forchhmeir porous channel in the presence of wall transpiration. We use the central difference approximations for the spatial derivatives, whereas the time integration has been performed by employing the three steps explicit Runge-Kutta method to obtain the numerical solution. It i...

متن کامل

Numerical Modeling of Two-Layered Micropolar Fluid Through an Normal and Stenosed Artery

In the present work a two fluid model for blood flow through abnormally constrictedhuman artery (stenosed artery) has been developed. The model consists of a core region of suspensionof all erythrocytes assumed to be micro-polar fluid so as to include the micro-structural effects inaddition to the peripheral-layer viscosity effects, and a peripheral plasma layer free from cells of anykind of Ne...

متن کامل

MHD Flow and Heat Transfer Analysis of Micropolar Fluid through a Porous Medium between Two Stretchable Disks Using Quasi-Linearization Method

In this paper, a comprehensive numerical study is presented for studying the MHD flow and heat transfer characteristics of non-Newtonian micropolar fluid through a porous medium between two stretchable porous disks. The system of governing equations is converted into coupled nonlinear ordinary ones through a similarity transformation, which is then solved using Quasi-linearization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007